
CAUSAL INFERENCE ON REGRESSION DISCONTINUITY DESIGNS BY
HIGH-DIMENSIONAL METHODS

YOICHI ARAI, TAISUKE OTSU, AND MYUNG HWAN SEO

Abstract. In causal or treatment effect analysis, discontinuities in regression functions induced

by an assignment variable can be utilized to retrieve causal effects. The regression discontinuity

design (RDD) has been extensively employed in the literature to identify the average treatment

effect at the discontinuity point. This paper proposes an estimation and inference method for

causal parameters identified by the RDD based on high-dimensional statistical techniques. Our

methods are practical and competitive with the existing kernel-based local methods.

1. Introduction

In causal or treatment effect analysis, discontinuities in regression functions induced by an
assignment variable can provide useful information to identify certain causal effects. The re-
gression discontinuity design (RDD) has been widely applied in observational studies to identify
the average treatment effect at the discontinuity point. For the RDD, the causal parameters
of interest are identified by some contrasts of the left and right limits of the conditional mean
functions.

This paper proposes an estimation and inference method for causal parameters identified by the
RDD based on high-dimensional statistical techniques. Our method is practical and competitive
with the existing kernel-based local methods, such as Imbens and Kalyanaraman (2012). In
particular, we interpret the estimation problem of the causal effect parameter in the sharp RDD
as that of a slope coefficient in a partially linear model, and then estimate the parameter by the
penalized least squares, such as the lasso. As discussed in Gelman and Imbens (2018), there are
some problems of using global (and low-dimensional) polynomial regressions to estimate causal
effects in the RDD. This paper argues that the penalized least square approach using relatively
high-dimensional basis functions can be useful to alleviate those problems. Our high-dimensional
approach is naturally extended to other setups, such as the fuzzy RDD and regression kink design
(RKD) studied by e.g., Card, et al. (2015) and Ganong and Jäger (2018).

As theoretical contributions, this paper proposes asymptotic and bootstrap inference methods
for the causal parameters in the RDD. Our inference problem can be formulated as the one for
low-dimensional parameters in high-dimensional models. In statistics literature, many papers
investigated this issue, such as Belloni, Chernozhukov and Hansen (2014), van de Geer, et al.
(2014), and Zhang and Zhang (2014). However, these approaches are not directly applicable
to the RDD context because the current problem is inference on a jump in a nonparametric
regression model with a single regressor.
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This paper also contributes to the growing literature for estimation and inference on the
RDD. Imbens and Lemieux (2008) provided a comprehensive survey on early literature. Imbens
and Kalyanaraman (2012) and Arai and Ichimura (2018) studied optimal bandwidth selection
methods for kernel-based estimators. Calonico, Cattaneo and Titiunik (2014) proposed a robust
confidence interval for kernel-based estimators. Calonico, Cattaneo and Titiunik (2015) devel-
oped an optimal data-driven method for the RDD plots. We emphasize that most methodology
papers on the RDD analysis focus on the kernel-based local methods. On the other hand, this
paper advocates an alternative series-based approach using high-dimensional methods.

This paper is organized as follows. Section 2.1 presents our basic setup and estimator for the
sharp RDD. In Section 2.2, we propose an inference method on the causal effect in the sharp
RDD. In Section 3, we discuss extensions to the fuzzy RDD (Section 3.1), the case of unknown
discontinuity point (Section 3.2), and the RKD (Section 3.3). Section 4 presents some simulation
results.

2. Main result

2.1. Setup and point estimation. In this section, we present our basic setup and point es-
timator for the RDD. For each unit i = 1, . . . , n, we observe an indicator variable Wi for a

treatment (Wi = 1 if treated and Wi = 0 otherwise), and outcome Yi =

{
Yi(0) if Wi = 0,

Yi(1) if Wi = 1,
,

where Yi(0) and Yi(1) are potential outcomes for Wi = 0 and Wi = 1, respectively. Note that
we cannot observe Yi(0) and Yi(1) simultaneously. Our purpose is to make inference on the
causal effect of the treatment, or more specifically, some distribution aspects of the difference of
potential outcomes Yi(1) − Yi(0). The RDD analysis focuses on the case where the treatment
assignment Wi is completely or partly determined by some observable covariate Xi, called the
forcing variable. For example, to study the effect of class size on pupils’ achievements, it is
reasonable to consider the following setup: the unit i is school, Yi is an average exam score, Wi

is an indicator variable for the class size (Wi = 0 for one class and Wi = 1 for two classes), and
Xi is the number of enrollments.

Depending on the assignment rule for Wi based on Xi, we have two cases, called the sharp
and fuzzy RDDs. In this section, we focus on the sharp RDD and discuss the fuzzy RDD in
Section 3.1. In the sharp RDD, the treatment is deterministically assigned based on the value of
Xi, i.e.

Wi = I{Xi ≥ c},

where I{·} is the indicator function and c is a known cutoff point (the case of unknown cutoff
will be briefly discussed in Section 3.2). A parameter of interest in this case is the average causal
effect at the discontinuity point c,

θ0 = E[Yi(1)− Yi(0)|Xi = c].

Since the difference of potential outcomes Yi(1) − Yi(0) is unobservable, we need a tractable
representation of θ0 in terms of quantities that can be estimated by data. If the conditional
mean functions E[Yi(1)|Xi = x] and E[Yi(0)|Xi = x] are continuous at the cutoff point x = c,
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then the average causal effect θ0 can be identified as a contrast of the left and right limits of the
conditional mean E[Yi|Xi = x] at x = c,

θ0 = lim
x↓c

E[Yi|Xi = x]− lim
x↑c

E[Yi|Xi = x]. (2.1)

In the literature, it is common to employ some nonparametric kernel-based method to estimate
this object. In contrast, we estimate θ0 by the following regression model

Yi = Wiθ0 +m(Xi) + εi,

where εi is an error term satisfying E[εi|Xi] = 0, and m(·) is a function continuous (but typically
non-differentiable) at c. Note that this model is different from the conventional partially linear
model because Wi = I{Xi ≥ c} is also a function of Xi. We propose to estimate this model by
the lasso regression

min
β

1

n

n∑
i=1

{
Yi −Wiθ − α−WiM

′
iγR − (1−Wi)M

′
iγL
}2

+ λn|β|1, (2.2)

where β = (α, θ, γ′R, γ
′
L)′ is a vector of parameters, Mi = (m(1)(Xi), . . . ,m

(p)(Xi))
′ is a vector of

basis functions (or dictionaries) to approximate m(·) evaluated at Xi without intercept, |β|1 =∑2p+2
j=1 |βj | is the `1-norm of the parameter vector, and λn is a penalty level. The estimator θ̂ of

the average causal effect θ0 is obtained by the estimated coefficient of Wi.
Under mild regularity conditions, the lasso yields a consistent estimator for the nonparametric

regression function without knowing a priori what are the most significant basis functions of the
series estimation. The resulting estimation error bound for the regression function is as sharp as
the oracle who knows the identity of the relevant basis functions up to a logarithmic factor (see,
e.g., Bühlmann and van de Geer, 2011).

It may be possible to estimate θ0 based on certain linear combination of the estimated co-
efficients of lasso regression from Yi on {Wi(1,Mi), (1 −Wi)(1,Mi)}. Although this approach
yields the same OLS estimate for θ0 (for low-dimensional case), the lasso estimates are generally
different. Our preliminary simulation results suggest that the lasso estimate based on such a
linear combination is relatively unstable because the estimate of θ0 depends on all the regression
coefficients. Therefore, we recommend the parametrization in (2.2) because it directly estimates
the parameter of interest by the coefficient of the single regressor Wi.

Regarding the choice of the basis functions Mi, there are several possibilities, such as polyno-
mials, splines, Fourier series, wavelets, and mixed versions of them. We recommend to employ a
sufficiently flexible Mi with large dimension and let the lasso choose the adequate subset.

An insightful paper by Gelman and Imbens (2018) pointed out the problems of using global
(and low-dimensional) polynomial regressions estimated by the OLS. They raised three issues,
and our method can be understood as a way to alleviate those issues. First, Gelman and Imbens
(2018) argued that the weights in the weighted average representation of the estimator of θ0 are
highly sensitive to the order of polynomials. Although it is generally difficult to characterize
the lasso estimator by the weighted average form, some shrinkage estimators, such as the ridge,
may be interpreted as attempts to stabilize those weights. Second, Gelman and Imbens (2018)
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illustrated that the estimate of θ0 based on the OLS polynomial fits is too sensitive to their
order. Again, since the lasso is a shrinkage estimator that attempts to stabilize the estimates by
sacrificing the bias, our method can alleviate this issue. Third, Gelman and Imbens (2018) also
argued that inference based on the OLS polynomial fits does not typically achieve the nominal
level. Inference is another important issue for the RDD analysis, which will be discussed in the
next section.

2.2. Inference. We now consider inference on the causal parameter θ0. Let Fi = (M ′iWi,M
′
i(1−

Wi))
′ and define the demeaned variables (yi, wi, f

′
i) = (Yi − Ȳ ,Wi − W̄ , (Fi − F̄ )′). We propose

the following procedure to construct the confidence interval of θ0, which is different from the
existing methods, such as Zhang and Zhang (2014).

Asymptotic confidence interval for the RDD causal effect:

(1) Run the lasso regression from yi on (wi, fi) to obtain

(θ̃, γ̃′) = arg min
θ,γ

1

n

n∑
i=1

(yi − wiθ − f ′iγ)2 + λn|γ|1, (2.3)

where λn = Aσ

√
2 log(2p/ς)

n with A > 1, σ2 = E[ε2i ], and 0 < ς ≤ 1, and the corresponding
residual ẽi = yi − wiθ̃ − f ′i γ̃.

(2) Compute the threshold lasso estimator γ̂j = |γ̃j |I{|γ̃j | > an} for each j and some an �
λns, where s is defined Assumption 1 in Appendix. Also let Sn = {j : |γ̃j | > an} and
fSn,i and γSn be subvectors of fi and γ that consist of the indexes in Sn. In practice, we
may set an = λn

∑2p
j=1 I{|γ̃j | > 0} log n.

(3) Run the OLS from wi on fSn,i to obtain the OLS estimates δ̃ and residuals ζ̃i = wi−f ′Sn,i
δ̃.

(4) Compute the bias corrected estimator

θ̄ =

(
n∑
i=1

ζ̃iwi

)−1 n∑
i=1

ζ̃i(yi − f ′i γ̂), (2.4)

and residuals ēi = yi − wiθ̄ − f ′i γ̂.
(5) Report the 100(1− a)% confidence interval for θ0 asθ̄ ± z1−a/2

(
n∑
i=1

ζ̃2
i

)−1( n∑
i=1

ζ̃2
i ē

2
i

)1/2
 , (2.5)

where z1−a/2 is the (1− a/2)-th quantile of the standard normal distribution.

Validity of this confidence interval is shown by the following theorem.

Theorem 1. Under Assumptions 1-4 in Appendix,(
n∑
i=1

ζ̃2
i

)(
n∑
i=1

ζ̃2
i ē

2
i

)−1/2

(θ̄ − θ0)
d→ N(0, 1).

There are growing interests in developing inference methods for low-dimensional parameters
in high-dimensional models, which are estimated by penalized estimation methods such as the
(bias-corrected) lasso (see, e.g., Zhang and Zhang, 2014, and Belloni, Chernozhukov and Hansen,
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2014). However, these approaches are not directly applicable to the current setup because we
are concerned with a nonparametric regression problem with a single regressor. That is, the
regressor of interest Wi is a function of Xi and can be approximated with an arbitrarily small
approximation error by linear combinations of the other regressors. For example, the setup of
Belloni, Chernozhukov and Hansen (2014, eq. (2.3)) does not cover ours, nor does Zhang and
Zhang (2014, Theorem 1) that imposes a similar restriction (through the constant ηi in their
notation).

We now discuss how to select the tuning parameter λn. Since variable selection is embedded
in the lasso regression, the standard error σ is difficult to estimate unlike in fixed-dimensional
regressions. One way to deal with this issue is the iteration, in which the first step takes the
sample standard deviation of y as an estimate of σ in the construction of λn and then take the
standard deviation of the resulting residuals. Sometimes, however, the sample standard deviation
of y is too large, which means λn is too large for the lasso to select any variables. In this case,
we may adjust the initial choice for σ as λn/c for some c > 1. Another option is cross validation,
which is widely used in practice.

Instead of the asymptotic critical value given by Theorem 1, we can also employ the following
bootstrap procedure.

Bootstrap confidence interval for the RDD causal effect:

(1) The bootstrap resamples {y∗i }ni=1 are generated from

y∗i = wiθ̄ + f ′i γ̂ + ε̂iη
∗
i , (2.6)

where ε̂i is the residual from the lasso regression in (2.3) and η∗i is independent of the
data and satisfies E[η∗i ] = 0 and E[η∗2i ] = 1.

(2) Follow Steps 1-4 to compute (2.4) using the bootstrap resample {y∗i , xi}ni=1. We obtain

θ̄∗ =
(∑n

i=1 ζ̃
∗2
i

)−1∑n
i=1 ζ̃

∗
i (y∗i −f ′i γ̂∗) and compute the residuals e∗i = (y∗i −f ′i γ̂∗)−wiθ̄∗.

(3) Compute the bootstrap statistic

t∗ =

(
n∑
i=1

ζ̃∗2i

)(
n∑
i=1

ζ̃∗2i e
∗2
i

)−1/2

(θ̄∗ − θ̄). (2.7)

(4) Repeat Steps 1-2 many times and construct the 100(1−a)% bootstrap confidence interval
asθ̄ − z∗1−a/2

(
n∑
i=1

ζ̃2
i

)−1( n∑
i=1

ζ̃2
i e

2
i

)1/2

, θ̄ − z∗a/2

(
n∑
i=1

ζ̃2
i

)−1( n∑
i=1

ζ̃2
i e

2
i

)1/2
 ,

where z∗a is the a-th empirical quantile of t∗.

Asymptotic validity of this procedure is established as follows.

Theorem 2. Under the regularity conditions given in Appendix,(
n∑
i=1

ζ̃∗2i

)(
n∑
i=1

ζ̃∗2i ē
∗2
i

)−1/2

(θ̄∗ − θ̄) d→ N(0, 1) in P.
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Chatterjee and Lahiri (2011) demonstrated that a naive application of the nonparametric
bootstrap (i.e., resampling from the original sample {Yi, Xi}ni=1 with equal weights) is invalid to
replicate the asymptotic distribution of the lasso estimator when the dimension of the regression
function is fixed. On the other hand, our bootstrap procedure employs the wild bootstrap with
the bias corrected estimator θ̄ to ensure its validity.

3. Discussion

3.1. Fuzzy RDD. Although the discussion so far focuses on the sharp RDD analysis, it is
possible to extend our approach to the fuzzy RDD analysis, where the forcing variable Xi is not
informative enough to determine the treatmentWi but can affect on the treatment probability. In
particular, the fuzzy RDD assumes that the conditional treatment probability Pr{Wi = 1|Xi =

x} jumps at x = c. To define a reasonable parameter of interest for the fuzzy case, let Wi(x)

be a potential treatment for unit i when the cutoff level for the treatment was set at x, and
assume that Wi(x) is non-increasing in x at x = c. Using the terminology of Angrist, Imbens
and Rubin (1996), unit i is called a complier if her cutoff level is Xi (i.e., limx↓Xi

Wi(x) = 0 and
limx↑Xi

Wi(x) = 1). A parameter of interest in the fuzzy RDD, suggested by Hahn, Todd and
van der Klaauw (2001), is the average causal effect for compliers at x = c,

θf = E[Yi(1)− Yi(0)|i is complier, Xi = c].

Hahn, Todd and van der Klaauw (2001) showed that under mild conditions the parameter θf
can be identified by the ratio of the jump in the conditional mean of Yi at x = c to the jump in
the conditional treatment probability at Xi = c, i.e.,

θf =
limx↓cE[Yi|Xi = x]− limx↑cE[Yi|Xi = x]

limx↓c Pr{Wi = 1|Xi = x} − limx↑c Pr{Wi = 1|Xi = x}
. (3.1)

In this case, letting Ti = I{Xi ≥ c}, the numerator of (3.1) can be estimated as in (2.2) by replac-
ing Wi with Ti. Also, the denominator of (3.1) can be estimated as in (2.2) by replacing (Yi,Wi)

with (Wi, Ti). We expect that analogous results to the sharp RDD case can be established.

3.2. Unknown discontinuity point. In some applications, the discontinuity point c for the
RDD analysis is unknown typically due to privacy or ethical reasons, and needs to be estimated.
Such examples include the threshold for scholarship offers and tipping point for dynamics of
segregation (Card, Mas and Rothstein, 2008). See also Porter and Yu (2015).

If the discontinuity point c is unknown, we can jointly estimate the slope parameters in (2.2)
and c by

min
β,c

1

n

n∑
i=1

{
Yi − I{Xi ≥ c}θ − α− I{Xi ≥ c}M ′iγR − I{Xi < c}M ′iγL

}2
+ λn

dimβ∑
j=1

|dj(c)βj |,

where β = (α, θ, γ′R, γ
′
L)′ and dj(c) is the empirical L2-norm of the corresponding regressor. This

approach was considered in Lee, Seo and Shin (2016), and they showed that the discontinuity
point c can be estimated fast enough to ensure certain oracle property. Thus analogous inference
methods on θ0 as in Section 2.2 can be developed.
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3.3. Regression kink design. Our high-dimensional method can be extended for the RKDs.
For each unit i = 1, . . . , n, we observe continuous outcome and explanatory variables denoted by
Yi and Xi, respectively. The RKD analysis is concerned with the following nonseparable model

Y = f(B,X,U),

where U is an error term (possibly multivariate) and B = b(X) is a continuous policy variable
of interest with known b(·). In general, even though we know the function b(·), we are not
able to identify the treatment effect by the policy variable B. However, it is often the case
that the policy function b(·) has some kinks (but is continuous). For instance, suppose Y is
duration of unemployment and X is earnings before losing the job. We are interested in the
effect of unemployment benefits B = b(X). In many unemployment insurance systems (e.g.,
the one in Austria), b(·) is specified by a piecewise linear function. In such a scenario, one may
exploit changes of slopes in the conditional mean E[Y |X = x] to identify a treatment effect of
B. Suppose b(·) is kinked at c. In particular, Card, et al. (2015) have shown that a treatment
on treated parameter τ0 =

∫ ∂f(b,x,u)
∂b dFU |B=b,X=x(u) is identified as

τ0 =
limx↓c

d
dxE[Y |X = x]− limx↑c

d
dxE[Y |X = x]

limx↓c
d
dxb(x)− limx↑c

d
dxb(x)

. (3.2)

To estimate τ0, we propose the following lasso regression

min
β

1

n

n∑
i=1

{
Yi − α−WiXiθ −Xiγ −WiM

′
iγR − (1−Wi)M

′
iγL
}2

+ λn|β|1, (3.3)

where β = (α, θ, γ, γ′R, γ
′
L)′ is a vector of parameters, Mi = (m(1)(Xi), . . . ,m

(p−1)(Xi))
′ is a

vector of basis functions (or dictionaries) evaluated at Xi without the intercept and linear terms,
and λn is a penalty level. Let θ̂ be the lasso estimator of θ by (3.3). Since the denominator
b0 = limx↓c

d
dxb(x) − limx↑c

d
dxb(x) in (3.2) is assumed to be known, the estimator of τ0 is given

by τ̂ = θ̂/b0. For the properties of the point estimator, similar comments to the previous section
apply. To conduct inference on the causal parameter τ0, it is possible to adapt the inference
methods in Section 2 to the RKD setup.

4. Simulation

Here we evaluate finite sample performance of our high-dimensional method for RDDs. We
adopt the simulation design of Imbens and Kalyanaraman (2012) and generate

Yi = m(Xi) + Ui,

for i = 1, . . . , n, where Xi = 2Zi − 1 with Zi ∼ Beta(2, 4) (so that Xi is supported on [−1, 1])
and Ui ∼ N(0, 0.12952). For the conditional mean function m(·), we consider four cases:
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1 : m1(x) =

{
0.48 + 1.27x+ 7.18x2 + 20.21x3 + 21.54x4 + 7.33x5 if x < 0,

0.52 + 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5 if x ≥ 0,

2 : m2(x) = [4I{x ≥ 0}+ 3I{x < 0}]x2,

3 : m3(x) = 0.42 + 0.1I{x ≥ 0}+ 0.84x− 3.00x2 + 7.99x3 − 9.01x4 + 3.56x5,

4 : m4(x) = 0.42 + 0.1I{x ≥ 0}+ 0.84x+ 7.99x3 − 9.01x4 + 3.56x5.

All functions have jumps at x = 0.
To estimate the causal effect θ0 in (2.1), we implement the lasso regression in (2.2) using cubic

spline basis functions. In particular, we consider two sequences of knots (−0.9,−0.8, . . . ,−0.1, 0.1, . . . , 0.9)

(called Lasso 1) and (−0.99,−0.98, . . . ,−0.01, 0.01, . . . , 0.99) (called Lasso 2). Note that we do
not put a knot at 0, the discontinuity point of interest. The penalty level λn is chosen by the cross
validation. Finally, for comparison with existing methods, we compute the nonparametric kernel
estimator for θ0 using the bandwidth selection by Imbens and Kalyanaraman (2012) (called IK).

Table 1 reports the bias and root mean squared error (RMSE) of these point estimates based
on 1,000 Monte Carlo replications. Overall performance of the proposed Lasso estimator is
comparable to that of IK. For example, in terms of the RMSE, Lasso 1 works equally well as IK
for Design 1 and outperforms IK for Designs 2 and 3. Lasso 2, which has finer knots, tends to
exhibit larger bias than Lasso 1.

We next consider interval estimation of θ0. In particular, we compare the lasso-based con-
fidence interval in (2.5) (called Lasso-CI) with the asymptotic conventional confidence inter-
val based on the kernel estimator using Imbens and Kalyanaraman’s (2012) bandwidth (called
Kernel-CI).1

Table 2 presents the empirical coverages (EC) and average lengths (AL) of these confidence
intervals across 1,000 Monte Carlo replications. The nominal level is 0.95. Overall the proposed
lasso-based confidence interval is favorably comparable with the kernel-based confidence interval.
For Designs 1 and 2, our method works significantly better than the kernel method in terms of
the empirical coverages. For Design 3 and 4, our lass-based method works better for the smaller
sample size.

1We also tried to implement a robust confidence interval for the RDD causal effect proposed by Calonico, Cattaneo
and Titiunik (2014). However, in our simulation, we often encountered numerical problems to compute their
standard error (on p. 2320) particularly for the case of n = 200.
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Appendix A. Mathematical Appendix

A.1. Assumptions. We impose the following assumptions.

Assumption.

(1) There exists a representation of the conditional expectation of y given x satisfying E[yi|xi] =

wiθ0 +f ′iγ0 +r(xi), where S = {j : γ0j 6= 0} s = |γ0|0 = o(n), min{|γ0j | : γ0j 6= 0} ≥ 2an,
supx |r(x)| = o(1), and

∑n
i=1 r(xi)

2 = op(1).
(2) Let εi = yi − E[yi|xi] and ζi = wi − f ′S,iδ0, where δ0 denotes the projection coefficient of

wi on fS,i, Then, there exist c and C such that

0 < c ≤
∑n

i=1 ζ
2
i∑n

i=1 ζ
2
i |εi|q

,

∑n
i=1 ζ

2
i∑n

i=1 ζ
2
i |fij |2

≤ C <∞, for q = 1, 2,

for all j ∈ S, with probability approaching one.
(3) E[ε2

i |xi] is bounded above and bounded away from zero, and

max
j
E
[
exp(|εifij |) + exp(|ζifij |) + exp(f2

ij)
]
≤ C

for some C <∞.
(4) Let Σf = E[fif

′
i ] and Σ = E[ziz

′
i] with zi = (wi, f

′
i)
′. There exists a positive constants φ

such that
(1 + |S|) b′Σb

{|b1|+
∑

j∈S |bj+1|)}2
≥ φ2,

for any b ∈ Rp+1 satisfying
∑

j∈SC |bj+1| ≤ 3{|b1|+
∑

j∈S |bj+1|}.

This a set of regularity conditions on the regression model and moments of the variables.
Assumption (1) states that the regression function E[yi|xi] can be well-approximated by s terms
of basis functions {fi} and the minimal signal strength is bounded below by 2an, which is known
as a betamin condition. Assumption (2) controls the linear dependence between wi and fi.
Because both wi and fS,i are functions of the covariate xi, we want to take a good care of the
choice of fi to ensure the presence of enough variation in the projection error ζi. The other
conditions are common in the high-dimensional regression. Assumption (3) is a set of moment
conditions, and Assumption (4) is the so-called compatibility condition for the design matrix Σ

to yield an oracle result for the lasso estimator. See, e.g., Bühlmann and van de Geer (2011,
Section 6.13) for more discussions on its relation to the restricted eigenvalue condition by Bickel,
Ritov and Tsybakov (2009) and many other related concepts.

A.2. Proof of Theorem 1. By the definition of θ̄ and Assumption (1), we can decompose∑n
i=1 ζ̃iwi√∑n
i=1 ζ̃

2
i ē

2
i

(θ̄ − θ0) =

∑n
i=1 ζ̃iεi√∑n
i=1 ζ̃

2
i ē

2
i

+

∑n
i=1 ζ̃ir(xi)√∑n

i=1 ζ̃
2
i ē

2
i

−
∑n

i=1 ζ̃if
′
i(γ̂ − γ0)√∑n

i=1 ζ̃
2
i ē

2
i

≡ T1 + T2 − T3.

Thus, it is enough to show that T1
d→ N(0, 1) and T2, T3

p→ 0.
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For T1, Lemma A.1, Assumption (2), and the central limit theorem imply

T1 =

∑n
i=1 ζ̃iεi√∑n
i=1 ζ

2
i ε

2
i

+ op(1) =

∑n
i=1 ζiεi√∑n
i=1 ζ

2
i ε

2
i

+ op(1)
d→ N(0, 1).

For T2, the Cauchy-Schwarz inequality and Assumption (1) (
∑n

i=1 r(xi)
2 = op(1)) imply

|T2| ≤

√ ∑n
i=1 ζ̃

2
i∑n

i=1 ζ̃
2
i ē

2
i

op(1) =

√ ∑n
i=1 ζ

2
i∑n

i=1 ζ
2
i ε

2
i

op(1)
p→ 0,

where the equality follows from Lemma A.1 and the convergence follows from Assumption (2).
For T3, note that ζ̃i is orthogonal to the elements of fi that belong to Sn and thus

|T3| =

∣∣∣∑n
i=1 ζ̃if

′
SC
n ,i
γ0,SC

n

∣∣∣√∑n
i=1 ζ̃

2
i ē

2
i

p→ 0,

since P{Sn = S} → 1 due to Lemma A.2.

Lemma A.1. Under the assumptions above,∑n
i=1 ζ̃

2
i ē

2
i∑n

i=1 ζ
2
i ε

2
i

p→ 1,

∑n
i=1 ζ̃

2
i∑n

i=1 ζ
2
i

p→ 1, and
n∑
i=1

ζ̃iεi =

n∑
i=1

ζiεi + op

∣∣∣∣∣
n∑
i=1

ζ2
i

∣∣∣∣∣
1/2
 .

Proof. Since the proof is similar for the first two, we focus on the first statement. By
Assumption (1) and the fact that P{Sn = S} → 1, we can write without loss of generality that
ζ̃i = ζi − f ′S,i(δ̃ − δ0) and ēi = εi + r(xi) − wi(θ̄ − θ0) − f ′i(γ̂ − γ0). The conclusion follows by
plugging in these expressions to

∑n
i=1 ζ̃

2
i ē

2
i and showing all terms except

∑n
i=1 ζ

2
i ε

2
i are negligible.

First, by Assumption (1)-(2),∑n
i=1 ζ

2
i r(xi)

2∑n
i=1 ζ

2
i ε

2
i

≤ {sup
x
|r(x)|}2

∑n
i=1 ζ

2
i∑n

i=1 ζ
2
i ε

2
i

p→ 0.

Second, by |wi| ≤ 1 and Assumption (2),∑n
i=1 ζ

2
i w

2
i∑n

i=1 ζ
2
i ε

2
i

(θ̄ − θ0)2 ≤ C(θ̄ − θ0)2 p→ 0.

Third, by Assumption (2),∑n
i=1 ζ

2
i {f ′i(γ̂ − γ0)}2∑n
i=1 ζ

2
i ε

2
i

≤ C
(

max
1≤i≤n

|f ′i(γ̂ − γ0)|
)2

p→ 0,

whose convergence follows from

max
1≤i≤n

|f ′i(γ̂ − γ0)| ≤
(

max
1≤i≤n

max
1≤j≤2p

|fij |
)

(|γ̃ − γ0|1 + |γ̃ − γ̂|1) = Op(λns log(np)) = op(1),

where the first inequality is due to the Hölder inequality and the triangle inequality and the
subsequent equality follows from the deviation bound for γ̃ in Lemma A.2 (and its implication
on the perfect selection on S), |γ̃ − γ̂|1 =

∑
j |γ̃j |I{|γ̃j | ≤ an} ≤ Op(sλn log n), and Bühlmann

10



and van de Geer (2011, Lemma 14.12). Finally, by Assumption (2),∑n
i=1 ε

2
i {f ′S,i(δ̃ − δ0)}2∑n
i=1 ζ

2
i ε

2
i

≤
∑n

i=1 ε
2
i∑n

i=1 ζ
2
i ε

2
i

(
max

1≤i≤n
|f ′S,i(δ̃ − δ0)|

)2
p→ 0.

The convergence follows from Assumption (2), specifically, by the condition that
∑n

i=1 ζ
2
i ε

2
i is

the same order of magnitude as
∑n

i=1 ζ
2
i , and from

max
1≤i≤n

|f ′S,i(δ̃ − δ0)| ≤
(

max
1≤i≤n

max
j∈S
|fij |

)
|δ̃ − δ0|1 = Op(n

−1/2s log1/2 s log(ns)),

for which we recall that δ̃ is the OLS estimator and thus its l1 deviation bound is n−1/2s log1/2 s.
By similar arguments, we can show that other terms are also negligible.

Turning to the last statement, write
∑n

i=1 ζ̃iεi =
∑n

i=1 ζiεi−
∑n

i=1 εif
′
S,i(δ̃− δ0) and note that∣∣∣∑n

i=1 εif
′
S,i(δ̃ − δ0)

∣∣∣∣∣∑n
i=1 ζ

2
i

∣∣1/2 ≤

∣∣∣∣∣
n∑
i=1

εif
′
S,i(

n∑
i=1

fS,if
′
S,i)
−1

∣∣∣∣∣
1

C sup
j∈S

|
∑n

i=1 ζifij |∣∣∣∑n
i=1 ζ

2
i f

2
ij

∣∣∣1/2
≤ Op(s/

√
n)Op(

√
log s) = op(1),

where the Hölder inequality and Assumption (2), and then the Bernstein inequality are applied
for the first and second inequalities, respectively.

Lemma A.2. Under the assumptions above, it holds |(θ̃, γ̃′)−(θ0, γ
′
0)|1 = Op(λns). Furthermore,

Pr{Sn = S} → 1.

Proof. The regression model estimated in (2.3) can be written as Y = g + ε, where
Y = (y1, . . . , yn)′, g = (E[y1|x1], . . . , E[yn|xn])′, and ε = (ε1, . . . , εn)′. By Assumption (1),

g is written as g = Zβ0 + R, where Z =

[(
w1

f1

)
, . . . ,

(
wn

fn

)]′
, β0 = (θ0, γ

′
0)′, and R =

(r(x1), . . . , r(xn))′. We assume that the columns in Z are scale normalized (i.e.,
∑n

i=1(z
(j)
i )2 = n

for each j). Bühlmann and van de Geer (2011, Lemma 14.12) implies that if
√
n−1/2 log(max{n, p}) =

o(λn), then

Pr{An} ≡ Pr

{
8

n

∣∣∣∣∣
n∑
i=1

Ziεi

∣∣∣∣∣
∞

≤ λn

}
→ 1, (A.1)

as n→∞. Let β̃ = (θ̃, γ̃′)′.
We now prove the following statements:

(a): Conditionally on An, it holds
4

n
|Zβ̃ − g|22 + 3λn|β̃Sc |1 ≤

4

n
|R|22 + 5λn|β̃Sc − β0|1. (A.2)

Also, additionally, if Σ̂ = n−1Z ′Z is compatible for S with a compatibility constant
φ > 0, then

2

n
|Zβ̃ − g|22 + λn|β̃ − β0|1 ≤

6

n
|R|22 + 24λ2

nsλφ
−2. (A.3)

(b): Σ̂ is compatible for S with a compatibility parameter φ ≥ φΣ/
√

2, where φΣ is the
compatibility parameter of Σ = E[ziz

′
i] for S.

11



First, we prove (a). Since β̃ is a minimizer, we have

1

n
|Y − Zβ̃|22 + λn|β̃|1 ≤

1

n
|Y − Zβ0|22 + λn|β0|1.

By plugging Y = Zβ0 +R+ ε into the above,

n−1|Zβ̃ − g|22 + λn|β̃|1 ≤ n−1|R|22 + 2n−1ε′Z(β̃ − β0) + λn|β0|.

By the Hölder inequality, |n−1ε′Z(β̃ − β0)| ≤ |n−1ε′Z|∞|β̃ − β0|1. Thus, conditionally on An,
we can proceed as in Bühlmann and van de Geer (2011, Lemma 6.3) and the statement in (A.2)
follows. Also, the statement in (A.3) is given by Bühlmann and van de Geer (2011, Theorem
6.2).

Next, we show (b). Bühlmann and van de Geer (2011, Lemma 14.12) guarantees

|Σ̂− Σ|∞ = Op(n
−1/2 log p) ≤

φ2
Σ

32|S|
,

with probability approaching one. Therefore, the statement (b) follows by Bühlmann and van
de Geer (2011, Corollary 6.8).

Note that Assumption (1) guarantees 6
n |R|

2
2 = op(λ

2
nsλφ

−2). Therefore combining (A.1) and
(A.3) based on statement (b) implies the first conclusion of the lemma.

Finally, to prove that Pr{Sn = S} → 1, we note that the deviation bound we obtained above
is asymptotically negligible to the threshold an, implying that if |γ0j | = 0, γ̂j = 0 as well with
probability approaching one since |γ̃j | cannot exceed the threshold an and that if |γ0j | > 2an

then |γ̃j | must exceed the threshold an.

A.3. Proof of Theorem 2. In this proof, the superscript ∗ indicates the bootstrap counterpart
of the original statistic.

To show the validity of the above bootstrap, we begin with deriving the deviation bounds for
the bootstrap lasso estimate

(θ̃∗, γ̃∗′) = arg min
β

1

n

n∑
i=1

(y∗i − wiθ − f ′iγ)2 + λ∗n|γ|1, (A.4)

Following the same line of arguments in Lemma A.2, however, we obtain the deviation bounds
for |θ̃∗− θ̄|+ |γ̃∗− γ̂1| at the same rate for θ̃ and γ̃ and the selection consistency that P{S∗n = S}
converges to one, where S∗n denotes the indexes of selected variables from a bootstrap sample
by the thresholded lasso. In particular, all the other steps are identical other than an analogous
bound to (A.1) for the bootstrap sample, that is

P

{
8

n

∣∣∣∣∣
n∑
i=1

Ziēiη
∗
i

∣∣∣∣∣
∞

> λn

}

≤ P

{
max
j

∣∣∣∣∣ 8n
n∑
i=1

fijεiη
∗
i

∣∣∣∣∣ > λn
4

}
+ P

{
max
j

∣∣∣∣∣ 8n
n∑
i=1

fijη
∗
iwi(θ̄ − θ0)

∣∣∣∣∣ > λn
4

}

+P

{
max
j

∣∣∣∣∣ 8n
n∑
i=1

fijη
∗
i ri

∣∣∣∣∣ > λn
4

}
+ P

{
max
j

∣∣∣∣∣ 8n
n∑
i=1

fijη
∗
i f
′
i(γ̂ − γ0)

∣∣∣∣∣ > λn
4

}
→ 0

12



for which we apply in sequel the union bound and the decomposition of ēi for the inequality and
Bernstein inequality for the terms after the inequality in conjunction with the deviation bounds.
Specifically, we illustrate the last term

max
j

∣∣∣∣∣ 8n
n∑
i=1

fijη
∗
i f
′
i(γ̂ − γ0)

∣∣∣∣∣ ≤ max
j

max
t

∣∣∣∣∣ 8n
n∑
i=1

fijη
∗
i fit

∣∣∣∣∣ |γ̂ − γ0|1

= Op

(
log 2p√

n

)
Op(sλn).

Second, the preceding selection consistency implies that ζ̃∗i = ζ̃i with probability approaching
one and thus we can write without loss of generality that

θ̄∗ =

∑n
i=1 ζ̃i(y

∗
i − f ′i γ̂∗)∑n

i=1 ζ̃iwi
= θ̄ −

∑n
i=1 ζ̃if

′
i(γ̂
∗ − γ̂)∑n

i=1 ζ̃iwi
+

∑n
i=1 ζ̃iēiηi∑n
i=1 ζ̃iwi

.

For the same reasoning as Lemma A.1, we conclude that∑n
i=1 ζ̃

∗2
i ē
∗2
i∑n

i=1 ζ
2
i ε

2
i η

2
i

d→ 1, and
n∑
i=1

ζ̃iēiηi =
n∑
i=1

ζiεiηi + op

( n∑
i=1

ζ2
i

)1/2
 .

Furthermore, note that
∑n

i=1 ζ̃
∗2
i =

∑n
i=1 ζ̃

∗
i wi as ζ̃

∗
i is the OLS residual and proceed as in the

proof of Theorem 1 to conclude∑n
i=1 ζ̃

∗2
i√∑n

i=1 ζ̃
∗2
i ē
∗2
i

(θ̄∗ − θ̄) =

∑n
i=1 ζiεiηi√∑n
i=1 ζ

2
i ε

2
i η

2
i

+ op(1)

d→ N(0, 1) in P,

by the conditional multiplier central limit theorem, see e.g. p.176 in van der Vaart and Wellner
(1996).
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Appendix B. Tables

Table 1. Bias and RMSE of point estimators for RDD
n = 200 n = 500

Design Method Bias RMSE Bias RMSE
1 IK 0.040 0.072 0.038 0.054

Lasso 1 0.008 0.073 0.006 0.050
Lasso 2 -0.010 0.072 -0.029 0.056

2 IK 0.010 0.062 0.004 0.039
Lasso 1 -0.001 0.019 0.000 0.010
Lasso 2 -0.018 0.049 -0.010 0.020

3 IK -0.022 0.093 -0.014 0.058
Lasso 1 -0.019 0.065 -0.012 0.051
Lasso 2 -0.100 0.100 -0.100 0.100

4 IK -0.020 0.087 -0.011 0.056
Lasso 1 -0.090 0.095 -0.097 0.098
Lasso 2 -0.100 0.100 -0.117 0.118

Table 2. Empirical Coverage (EC) and Average Length (AL) for RDD
n = 200 n = 500

Design Method EC AL EC AL
1 Kernel-CI 0.770 0.178 0.663 0.113

Lasso-CI 0.824 0.369 0.880 0.252
2 Kernel-CI 0.862 0.187 0.885 0.120

Lasso-CI 0.957 0.249 0.962 0.124
3 Kernel-CI 0.824 0.248 0.841 0.163

Lasso-CI 0.835 0.329 0.778 0.214
4 Kernel-CI 0.819 0.248 0.840 0.164

Lasso-CI 0.822 0.505 0.776 0.311
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